31 research outputs found

    Symmetric data-driven fusion of diffusion tensor MRI: Age differences in white matter

    Get PDF
    In the past 20 years, white matter (WM) microstructure has been studied predominantly using diffusion tensor imaging (DTI). Decreases in fractional anisotropy (FA) and increases in mean (MD) and radial diffusivity (RD) have been consistently reported in healthy aging and neurodegenerative diseases. To date, DTI parameters have been studied individually (e.g., only FA) and separately (i.e., without using the joint information across them). This approach gives limited insights into WM pathology, increases the number of multiple comparisons, and yields inconsistent correlations with cognition. To take full advantage of the information in a DTI dataset, we present the first application of symmetric fusion to study healthy aging WM. This data-driven approach allows simultaneous examination of age differences in all four DTI parameters. We used multiset canonical correlation analysis with joint independent component analysis (mCCA + jICA) in cognitively healthy adults (age 20–33, n = 51 and age 60–79, n = 170). Four-way mCCA + jICA yielded one high-stability modality-shared component with co-variant patterns of age differences in RD and AD in the corpus callosum, internal capsule, and prefrontal WM. The mixing coefficients (or loading parameters) showed correlations with processing speed and fluid abilities that were not detected by unimodal analyses. In sum, mCCA + jICA allows data-driven identification of cognitively relevant multimodal components within the WM. The presented method should be further extended to clinical samples and other MR techniques (e.g., myelin water imaging) to test the potential of mCCA+jICA to discriminate between different WM disease etiologies and improve the diagnostic classification of WM diseases

    White matter plasticity in healthy older adults: The effects of aerobic exercise

    Get PDF
    White matter deterioration is associated with cognitive impairment in healthy aging and Alzheimer\u27s disease. It is critical to identify interventions that can slow down white matter deterioration. So far, clinical trials have failed to demonstrate the benefits of aerobic exercise on the adult white matter using diffusion Magnetic Resonance Imaging. Here, we report the effects of a 6-month aerobic walking and dance interventions (clinical trial NCT01472744) on white matter integrity in healthy older adults (n = 180, 60-79 years) measured by changes in the ratio of calibrated T1- to T2-weighted images (T1w/T2w). Specifically, the aerobic walking and social dance interventions resulted in positive changes in the T1w/T2w signal in late-myelinating regions, as compared to widespread decreases in the T1w/T2w signal in the active control. Notably, in the aerobic walking group, positive change in the T1w/T2w signal correlated with improved episodic memory performance. Lastly, intervention-induced increases in cardiorespiratory fitness did not correlate with change in the T1w/T2w signal. Together, our findings suggest that white matter regions that are vulnerable to aging retain some degree of plasticity that can be induced by aerobic exercise training. In addition, we provided evidence that the T1w/T2w signal may be a useful and broadly accessible measure for studying short-term within-person plasticity and deterioration in the adult human white matter

    Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults

    Get PDF
    Citation: Wong, C. N., Chaddock-Heyman, L., Voss, M. W., Burzynska, A. Z., Basak, C., Erickson, K. I., . . . Kramer, A. F. (2015). Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults. Frontiers in Aging Neuroscience, 7, 10. doi:10.3389/fnagi.2015.00154Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59-80 years). Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA), thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function

    Standard‐space atlas of the viscoelastic properties of the human brain

    Get PDF
    Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast-based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18–35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM-152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross-center comparisons

    The cortical structure of functional networks associated with age-related cognitive abilities in older adults.

    No full text
    Age and cortical structure are both associated with cognition, but characterizing this relationship remains a challenge. A popular approach is to use functional network organization of the cortex as an organizing principle for post-hoc interpretations of structural results. In the current study, we introduce two complimentary approaches to structural analyses that are guided by a-priori functional network maps. Specifically, we systematically investigated the relationship of cortical structure (thickness and surface area) of distinct functional networks to two cognitive domains sensitive to age-related decline thought to rely on both common and distinct processes (executive function and episodic memory) in older adults. We quantified the cortical structure of individual functional network's predictive ability and spatial extent (i.e., number of significant regions) with cognition and its mediating role in the age-cognition relationship. We found that cortical thickness, rather than surface area, predicted cognition across the majority of functional networks. The default mode and somatomotor network emerged as particularly important as they appeared to be the only two networks to mediate the age-cognition relationship for both cognitive domains. In contrast, thickness of the salience network predicted executive function and mediated the age-cognition relationship for executive function. These relationships remained significant even after accounting for global cortical thickness. Quantifying the number of regions related to cognition and mediating the age-cognition relationship yielded similar patterns of results. This study provides a potential approach to organize and describe the apparent widespread regional cortical structural relationships with cognition and age in older adults

    White matter integrity supports BOLD signal variability and cognitive performance in the aging human brain.

    No full text
    Decline in cognitive performance in old age is linked to both suboptimal neural processing in grey matter (GM) and reduced integrity of white matter (WM), but the whole-brain structure-function-cognition associations remain poorly understood. Here we apply a novel measure of GM processing-moment-to-moment variability in the blood oxygenation level-dependent signal (SDBOLD)-to study the associations between GM function during resting state, performance on four main cognitive domains (i.e., fluid intelligence, perceptual speed, episodic memory, vocabulary), and WM microstructural integrity in 91 healthy older adults (aged 60-80 years). We modeled the relations between whole-GM SDBOLD with cognitive performance using multivariate partial least squares analysis. We found that greater SDBOLD was associated with better fluid abilities and memory. Most of regions showing behaviorally relevant SDBOLD (e.g., precuneus and insula) were localized to inter- or intra-network "hubs" that connect and integrate segregated functional domains in the brain. Our results suggest that optimal dynamic range of neural processing in hub regions may support cognitive operations that specifically rely on the most flexible neural processing and complex cross-talk between different brain networks. Finally, we demonstrated that older adults with greater WM integrity in all major WM tracts had also greater SDBOLD and better performance on tests of memory and fluid abilities. We conclude that SDBOLD is a promising functional neural correlate of individual differences in cognition in healthy older adults and is supported by overall WM integrity

    The Dancing Brain: Structural and Functional Signatures of Expert Dance Training

    No full text
    Dance – as a ritual, therapy, and leisure activity – has been known for thousands of years. Today, dance is increasingly used as therapy for cognitive and neurological disorders such as dementia and Parkinson’s disease. Surprisingly, the effects of dance training on the healthy young brain are not well understood despite the necessity of such information for planning successful clinical interventions. Therefore, this study examined actively performing, expert-level trained college students as a model of long-term exposure to dance training. To study the long-term effects of dance training on the human brain, we compared 20 young expert female Dancers with normal body mass index with 20 age- and education-matched Non-Dancers with respect to brain structure and function. We used diffusion tensor, morphometric, resting state and task-related functional MRI, a broad cognitive assessment, and objective measures of selected dance skill (Dance Central video game and a balance task). Dancers showed superior performance in the Dance Central video game and balance task, but showed no differences in cognitive abilities. We found little evidence for training-related differences in brain volume in Dancers. Dancers had lower anisotropy in the corticospinal tract. They also activated the action observation network (AON) to greater extent than Non-Dancers when viewing dance sequences. Dancers showed altered functional connectivity of the AON, and of the general motor learning network. These functional connectivity differences were related to dance skill and balance and training-induced structural characteristics. Our findings have the potential to inform future study designs aiming to monitor dance training-induced plasticity in clinical populations

    Cortical thickness is linked to executive functioning in adulthood and aging

    No full text
    Executive functions that are dependent upon the frontal-parietal network decline considerably during the course of normal aging. To delineate neuroanatomical correlates of age-related executive impairment, we investigated the relation between cortical thickness and executive functioning in 73 younger (20-32 years) and 56 older (60-71 years) healthy adults. Executive functioning was assessed using the Wisconsin Card Sorting Test (WCST). Cortical thickness was measured at each location of the cortical mantle using surface-based segmentation procedures on high-resolution T1-weighted magnetic resonance images. For regions involved in WCST performance, such as the lateral prefrontal and parietal cortices, we found that thicker cortex was related to higher accuracy. Follow-up ROI-based analyses revealed that these associations were stronger in older than in younger adults. Moreover, among older adults, high and low performers differed in cortical thickness within regions generally linked to WCST performance. Our results indicate that the structural cortical correlates of executive functioning largely overlap with previously identified functional patterns. We conclude that structural preservation of relevant brain regions is associated with higher levels of executive performance in old age, and underscore the need to consider the heterogeneity of brain aging in relation to cognitive functioning

    Regional Brain Volumes Moderate, but Do Not Mediate, the Effects of Group-Based Exercise Training on Reductions in Loneliness in Older Adults

    No full text
    Introduction: Despite the prevalence of and negative health consequences associated with perceived loneliness in older adults, few studies have examined interactions among behavioral, psychosocial, and neural mechanisms. Research suggests that physical activity and improvements in perceived social support and stress are related to reductions in loneliness. Yet, the influence of brain structure on these changes is unknown. The present study examined whether change in regional brain volume mediated the effects of changes in social support and stress on change in perceived loneliness after an exercise intervention. We also examined the extent to which baseline brain volumes moderated the relationship between changes in social support, stress, and loneliness.Methods: Participants were 247 older adults (65.4 ± 4.6 years-old) enrolled in a 6-month randomized controlled trial comprised of four exercise conditions: Dance (n = 69), Strength/Stretching/Stability (n = 70), Walk (n = 54), and Walk Plus (n = 54). All groups met for 1 h, three times weekly. Participants completed questionnaires assessing perceived social support, stress, and loneliness at baseline and post-intervention. Regional brain volumes (amygdala, prefrontal cortex [PFC], hippocampus) before and after intervention were measured with automatic segmentation of each participant's T1-weighted structural MRI. Data were analyzed in a latent modeling framework.Results: Perceived social support increased (p = 0.003), while stress (p < 0.001), and loneliness (p = 0.001) decreased over the intervention. Increased social support directly (−0.63, p < 0.01) and indirectly, through decreased stress (−0.10, p = 0.02), predicted decreased loneliness. Changes in amygdala, PFC, and hippocampus volumes were unrelated to change in psychosocial variables (all p ≥ 0.44). However, individuals with larger baseline amygdalae experienced greater decreases in loneliness due to greater reductions in stress (0.35, p = 0.02). Further, individuals with larger baseline PFC volumes experienced greater reductions in stress due to greater increases in social support (−0.47, p = 0.02). No group differences in these pathways were observed.Conclusions: The social support environment and resulting reductions in stress, as opposed to exercise mode, may represent important features of exercise programs for improving older adults' perceived loneliness. As amygdala volume has been linked to anxiety, depression and impaired cognitive control processes in the PFC, moderation findings suggest further investigation in this area is warranted.Trial Registration: ClinicalTrials.gov identifier NCT01472744 (https://clinicaltrials.gov/ct2/show/NCT01472744?term=NCT01472744&rank=1)
    corecore